Section 10.3

Vector Valued Functions

We can describe the position of a moving particle by a vector in component form. Vectors have a direction and magnitude.

$$
r(t)=\langle x(t), y(t)\rangle
$$

The position is composed of horizontal and vertical components.

The length of the vector is called the magnitude and is denoted by $|r(t)|$

$$
|r(t)|=\sqrt{(x(t))^{2}+(y(t))^{2}}
$$

PVA Problems in the Vector/Parametric World

Position Vector: $(x(t), y(t))$ or $\langle x(t), y(t)\rangle$
Velocity Vector: $v(t)=\left\langle x^{\prime}(t), y^{\prime}(t)\right\rangle$
Slope of tangent line: $\frac{d y}{d x}=\frac{y^{\prime}(t)}{x^{\prime}(t)}$
Object at rest: $x^{\prime}(t)=0$ RAD $y^{\prime}(t)=0$ simultminouscly
Speed: $|v(t)|=\sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}}$

PVA Problems in the Vector/Parametric World

Acceleration Vector: $\quad a(t)=\left\langle x^{\prime \prime}(t), y^{\prime \prime}(t)\right\rangle$
Speeding up: X^{\prime} AnD $x^{\prime \prime}$ HANE SAME SIGN \rightarrow SPEEDINB LP HORIzOnTALY

$$
y^{\prime} \text { AnD } y^{\prime \prime} \text { Have SRME SLOW } \rightarrow \text { SpcoDano up veencruy }
$$

Slowing down: x^{\prime} mo $x^{\prime \prime}$ opposite Sibn \rightarrow SUWINo DOWN HORIZMNTHY

$$
y^{\prime} \text { MnO } y^{\prime \prime} \text { OPPOSITE SION } \rightarrow 11 \text { VERTCRCY }
$$

Other key formulas:
Total Distance Traveled: $\int|v(t)| d t=\int_{t_{1}}^{t_{2}} \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} d t$
Final Position = Initial Position + Displacement

$$
\begin{aligned}
& x\left(t_{2}\right)=x\left(t_{1}\right)+\int_{t_{1}}^{t_{2}} x^{\prime}(t) d t \\
& y\left(t_{2}\right)=y\left(t_{1}\right)+\int_{t_{1}}^{t_{2}} y^{\prime}(t) d t
\end{aligned}
$$

Example 5: Let the position of an object be given by the vector to the right:

$$
\langle 3 \cos t, 3 \sin t\rangle
$$

$$
x(t) \quad y(t)
$$

a) Find the velocity and acceleration vectors.

$$
v(t)=\left\langle x^{\prime}\left(t, y^{\prime}(t)\right\rangle=\langle-3 \sin t, 3 \cos t\rangle \quad a(t)=\left\langle x^{\prime \prime}(t), y^{\prime \prime}(t)\right\rangle=\langle-3 \cos t,-3 \sin t\rangle\right.
$$

b) Find the velocity, acceleration, speed and direction of motion at $t=\frac{\pi}{4}$.

$$
\text { SPEED }=\sqrt{\left(-\frac{3 \sqrt{2}}{2}\right)^{2}+\left(\frac{3 \sqrt{2}}{2}\right)^{2}}=3
$$

$$
v\left(\pi_{4}\right)=\left\langle-\frac{3 \sqrt{2}}{2}, \frac{3 \sqrt{2}}{2}\right\rangle
$$

DIRECTOR: $x^{\prime}\left(m_{4}\right)<0 \Rightarrow$ LETT $y^{\prime}\left(m_{y}\right)>0 \Rightarrow$ UP

$$
a\left(T_{4}\right)=\left\langle\frac{-3 \sqrt{2}}{2}, \frac{3 \sqrt{2}}{2}\right\rangle
$$

SPEEOMG w in x-OIRETTN: $x^{\prime}\left(\pi_{Y}\right)$ MOD $x^{\prime \prime}\left(\pi_{M}\right)$ BOON NEG.
SAWING OWN III y-DREEGNN: $y^{\prime}\left(m_{4}\right)$ MOD $y^{\prime \prime}\left(m_{4}\right)$ ARE OPP. SIGNS.

Example 6: Given the position vector: $\begin{gathered}\left\langle\begin{array}{c}\left.2 t^{3}-3 t^{2}, t^{3}-12 t\right\rangle \\ x(t) \quad y(t)\end{array}\right.\end{gathered}$
a) Write the equation of the tangent when $t=-1$.

$$
\frac{d y}{d x}=\frac{y^{\prime}(t)}{x^{\prime}(t)}=\left.\frac{3 t^{2}-12}{6 t^{2}-6 t} \Rightarrow \frac{d y}{d x}\right|_{t=-1}=\frac{-9}{12}=\frac{-3}{4} \Rightarrow \text { SLOPE }
$$

POINT: $(x(-1), y(-1))=(-5,11)$

$$
y-11=-\frac{3}{4}(x+5)
$$

Example 6: Given the position vector: $\left\langle 2 t^{3}-3 t^{2}, t^{3}-12 t\right\rangle$
b) Find the coordinates of all points where the horizontal component of the velocity is zero.

$$
\begin{aligned}
& x^{\prime}(t)=0 \\
& 6 t^{2}-6 t=0 \\
& 6 t(t-1)=0 \\
& t=0,1
\end{aligned}
$$

Example 6: Given the position vector: $\left\langle 2 t^{3}-3 t^{2}, t^{3}-12 t\right\rangle$

$$
x^{\prime}=6 t^{2}-6 t \quad y^{\prime}=3 t^{2}-12
$$

c) Find the total distance traveled on the interval $[0,2]$. (.caccuutio)

$$
\int_{0}^{2} \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} d t \approx 19.2599 \ldots . .
$$

$$
\int_{0}^{2} \sqrt{\left(6 t^{2}-6 t\right)^{2}+\left(3 t^{2}-12\right)^{2}} d t
$$

Example 6: Given the position vector: $\left\langle 2 t^{3}-3 t^{2}, t^{3}-12 t\right\rangle$
d) For what values) of t is the object at rest, if any?

$$
x^{\prime}=0 \text { And } y^{\prime}=0 \text { simultaneously }
$$

$$
\begin{array}{cc}
6 t^{2}-6 t=0 & 3 t^{2}-12=0 \\
6 t(t-1)=0 & 3\left(t^{2}-4\right)=0 \\
t=0,1 & t= \pm 2
\end{array}
$$

NEVER AT REST.

Example 9: $\quad v(t)=\left(\frac{1}{t+1}, 2 t\right)$
a) Find the acceleration vector and speed at $t=2$.

$$
\begin{aligned}
& a=\left\langle x^{\prime \prime}\left(t, y^{\prime \prime}(t)\right\rangle=\left\langle\frac{-1}{(t+1)^{\prime}}, 2\right\rangle \Rightarrow a(2)=\left\langle\frac{-1}{9}, 2\right\rangle\right. \\
& \text { SPEED }=\sqrt{\left(x^{\prime}(2)\right)^{2}+\left(y^{\prime}(2)\right)^{2}}=\sqrt{\left(\frac{1}{3}\right)^{2}+(4)^{2}}=\sqrt{\frac{1}{9}+16}=\sqrt{\frac{145}{9}}
\end{aligned}
$$

b) (Calculator) Find the total distance traveled from $t=0$ to $t=2$.

$$
\int_{0}^{2} \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} d t=4.335
$$

Example 9: $\quad v(t)=\left(\frac{1}{t+1}, 2 t\right)$

$$
a(t)=\left\langle\frac{-1}{(t+1)^{2}}, 2\right\rangle
$$

c) If $x(3)=-4$, find the x-coordinate of the object at $t=6$.

$$
\begin{aligned}
x(6) & =x(3)+\int_{3}^{6} x^{\prime}(t) d t \\
& \left.=-4+\int_{3}^{6} \frac{1}{t+1} d t=-4+\ln |t+1|\right]_{3}^{6}=-4+\ln 7-\ln 4
\end{aligned}
$$

d) Describe the motion of the object as t increases without bound.

$$
\begin{aligned}
& \lim _{t \rightarrow \infty} x^{\prime}(t)=0 \quad x^{\prime}>0 \text { amt nppenneuing } 0 \text { as } t \rightarrow \infty \Rightarrow \text { moving } R \text {, sumins down. }
\end{aligned}
$$

$$
\begin{aligned}
& y^{\prime \prime}>0 \quad(t \geq 0)
\end{aligned}
$$

Classwork:

AP Packet \#30, 32

Homework:

AP Packet \#23-31

